Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Surface Ocean-Lower Atmosphere Study (SOLAS) is a global research network dedicated to advancing coupled oceanographic and atmospheric science, a field that requires both interdisciplinary and globally distributed expertise. Since 2004, SOLAS has fostered an international interdisciplinary scientific community through coordinated science and capacity sharing activities. This paper outlines how SOLAS 3.0 (2026–2035) will build on this legacy by further prioritizing diversity, equity, and inclusion, and expanding and strengthening research at the ocean-atmosphere interface. SOLAS 3.0 new initiatives include a mentorship program, skill enhancement workshops, increasing access to resources, and a network of observation and training centers. By learning from past successes and challenges, SOLAS 3.0 aims to inspire scientists from around the world, as well as the next generation, to address complex transdisciplinary research and tackle present and future societal challenges in a truly global way.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Conway, T.; Fitzsimmons, J.; Middag, R; Noble, T.; Planquette, H. (Ed.)Because nitrogen availability limits primary production over much of the global ocean, understanding the controls on the marine nitrogen inventory and supply to the surface ocean is essential for understanding biological productivity and exchange of greenhouse gases with the atmosphere. Quantifying the ocean’s inputs, outputs, and internal cycling of nitrogen requires a variety of tools and approaches, including measurements of the nitrogen isotope ratio in organic and inorganic nitrogen species. The marine nitrogen cycle, which shapes nitrogen availability and speciation in the ocean, is linked to the elemental cycles of carbon, phosphorus, and trace elements. For example, the majority of nitrogen cycle oxidation and reduction reactions are mediated by enzymes that require trace metals for catalysis. Recent observations made through global-scale programs such as GEOTRACES have greatly expanded our knowledge of the marine nitrogen cycle. Though much work remains to be done, here we outline key advances in understanding the marine nitrogen cycle that have been achieved through these analyses, such as the distributions and rates of dinitrogen fixation, terrestrial nitrogen inputs, and nitrogen loss processes.more » « less
-
Abstract. Across the Southern Ocean in winter, nitrification is the dominantmixed-layer nitrogen cycle process, with some of the nitrate producedtherefrom persisting to fuel productivity during the subsequent growingseason. Because this nitrate constitutes a regenerated rather than a newnutrient source to phytoplankton, it will not support the net removal ofatmospheric CO2. To better understand the controls on Southern Oceannitrification, we conducted nitrite oxidation kinetics experiments insurface waters across the western Indian sector in winter. While allexperiments (seven in total) yielded a Michaelis–Menten relationship withsubstrate concentration, the nitrite oxidation rates only increasedsubstantially once the nitrite concentration exceeded 115±2.3 to245±18 nM, suggesting that nitrite-oxidizing bacteria (NOB) require aminimum (i.e., “threshold”) nitrite concentration to produce nitrate. Thehalf-saturation constant for nitrite oxidation ranged from 134±8 to403±24 nM, indicating a relatively high affinity of Southern OceanNOB for nitrite, in contrast to results from culture experiments. Despitethe high affinity of NOB for nitrite, its concentration rarely declinesbelow 150 nM in the Southern Ocean's mixed layer, regardless of season. Inthe upper mixed layer, we measured ammonium oxidation rates that were two-to seven-fold higher than the coincident rates of nitrite oxidation,indicating that nitrite oxidation is the rate-limiting step fornitrification in the winter Southern Ocean. The decoupling of ammonium andnitrite oxidation, combined with a possible nitrite concentration thresholdfor NOB, may explain the non-zero nitrite that persists throughout theSouthern Ocean's mixed layer year-round. Additionally, nitrite oxidation maybe limited by dissolved iron, the availability of which is low across theupper Southern Ocean. Our findings have implications for understanding thecontrols on nitrification and ammonium and nitrite distributions, both inthe Southern Ocean and elsewhere.more » « less
-
Abstract Biological dinitrogen fixation is the major source of new nitrogen to marine systems and thus essential to the ocean’s biological pump. Constraining the distribution and global rate of dinitrogen fixation has proven challenging owing largely to uncertainty surrounding the controls thereon. Existing South Atlantic dinitrogen fixation rate estimates vary five-fold, with models attributing most dinitrogen fixation to the western basin. From hydrographic properties and nitrate isotope ratios, we show that the Angola Gyre in the eastern tropical South Atlantic supports the fixation of 1.4–5.4 Tg N.a−1, 28-108% of the existing (highly uncertain) estimates for the basin. Our observations contradict model diagnoses, revealing a substantial input of newly-fixed nitrogen to the tropical eastern basin and no dinitrogen fixation west of 7.5˚W. We propose that dinitrogen fixation in the South Atlantic occurs in hotspots controlled by the overlapping biogeography of excess phosphorus relative to nitrogen and bioavailable iron from margin sediments. Similar conditions may promote dinitrogen fixation in analogous ocean regions. Our analysis suggests that local iron availability causes the phosphorus-driven coupling of oceanic dinitrogen fixation to nitrogen loss to vary on a regional basis.more » « less
An official website of the United States government
